Combinatorial Miller-Hagberg Algorithm for Randomization of Dense Networks

نویسنده

  • Hiroki Sayama
چکیده

We propose a slightly revised Miller-Hagberg (MH) algorithm that efficiently generates a random network from a given expected degree sequence. The revision was to replace the approximated edge probability between a pair of nodes with a combinatorically calculated edge probability that better captures the likelihood of edge presence especially where edges are dense. The computational complexity of this combinatorial MH algorithm is still in the same order as the original one. We evaluated the proposed algorithm through several numerical experiments. The results demonstrated that the proposed algorithm was particularly good at accurately representing high-degree nodes in dense, heterogeneous networks. This algorithm may be a useful alternative of other more established network randomization methods, given that the data are increasingly becoming larger and denser in today’s network science research.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified particle swarm optimization algorithm to solve location problems on urban transportation networks (Case study: Locating traffic police kiosks)

Nowadays, traffic congestion is a big problem in metropolises all around the world. Traffic problems rise with the rise of population and slow growth of urban transportation systems. Car accidents or population concentration in particular places due to urban events can cause traffic congestions. Such traffic problems require the direct involvement of the traffic police, and it is urgent for the...

متن کامل

Efficient Generation of Networks with Given Expected Degrees

We present an efficient algorithm to generate random graphs with a given sequence of expected degrees. Existing algorithms run in O(N2) time where N is the number of nodes. We prove that our algorithm runs in O(N+M) expected time where M is the expected number of edges. If the expected degrees are chosen from a distribution with finite mean, this is O(N) as N → ∞.

متن کامل

A Deterministic Multiple Key Space Scheme for Wireless Sensor Networks via Combinatorial Designs

The establishing of a pairwise key between two nodes for encryption in a wireless sensor network is a challenging issue. To do this, we propose a new deterministic key pre-distribution scheme which has modified the multiple key space scheme (MKSS). In the MKSS, the authors define two random parameters to make better resilience than existing schemes. Instead of a random selection of these parame...

متن کامل

Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization

Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...

متن کامل

Distribution Network Expansion Using Hybrid SA/TS Algorithm

Optimal expansion of medium-voltage power networks is a common issue in electrical distribution planning. Minimizing total cost of the objective function with technical constraints and reliability limits, make it a combinatorial problem which should be solved by optimization algorithms. This paper presents a new hybrid simulated annealing and tabu search algorithm for distribution network expan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1710.02733  شماره 

صفحات  -

تاریخ انتشار 2017